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A new approach is suggested to define and evaluate key metrics as to autonomous aerial 
vehicle performance.  This approach entails the conceptual definition of a “Turing Test” for 
UAVs.   Such a “UAV Turing test” would be conducted by means of mission simulations 
and/or tailored flight demonstrations of vehicles under the guidance of their autonomous 
system software.  These autonomous vehicle mission simulations and flight demonstrations 
would also have to be benchmarked against missions “flown” with pilots/human-operators in 
the loop.  In turn, scoring criteria for such testing could be based upon both quantitative 
mission success metrics (unique to each mission) and by turning to analog “handling 
quality” metrics similar to the well-known Cooper-Harper pilot ratings used for manned 
aircraft.  Autonomous aerial vehicles would be considered to have successfully passed this 
“UAV Turing Test” if the aggregate mission success metrics and handling qualities for the 
autonomous aerial vehicle matched or exceeded the equivalent metrics for missions 
conducted with pilots/human-operators in the loop.  Alternatively, an independent, 
knowledgeable observer could provide the “UAV Turing Test” ratings of whether a vehicle 
is autonomous or “piloted.”  This observer ideally would – in the more sophisticated mission 
simulations -- also have the enhanced capability of being able to override the scripted 
mission scenario and instigate failure modes and change of flight profile/plans.   If a 
majority of mission tasks are rated as “piloted” by the observer, when in reality the 
vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation 
“passes” the “UAV Turing Test.”  In this regards, this second “UAV Turing Test” approach 
is more consistent with Turing’s original “imitation game” proposal.  The overall feasibility, 
and important considerations and limitations, of such an approach for judging/evaluating 
autonomous aerial vehicle “intelligence” will be discussed from a theoretical perspective.  
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Nomenclature 

! 

G i  Cooper-Harper handling quality rating for the 
ith mission task for a generic aircraft model  

! 

H i  Cooper-Harper handling quality rating for the 
ith mission task for the subject aircraft  

! 

NM  Number of mission simulations 

! 

NT  Number of mission tasks being rated  

! 

sA  Mean mission success (from several mission 
simulations) of an autonomous system guiding 
and controlling a subject aircraft 

 

! 

sP  Mean mission success for human operator 
controlling subject aircraft in same set of 
mission simulations as autonomous system 

! 

S  Array of individual mission success estimates  

! 

Ti  Reviewer rating as to “intelligence” guiding 
the vehicle for ith mission task, for subset of 
tasks performed by autonomous system  

! 

" Level of autonomy 

! 

" * “Mechanistic approach” intelligence metric, 

! 

0 "# * " 10  

! 

"#
*  UAV Turing test intelligence metric  
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I. Introduction 

THERE continues to be ongoing debate as to how 
to define, measure, and evaluate key metrics as to 
autonomous aerial vehicle performance.  This includes, 
of course, fundamental questions, and measures, as to 
aerial vehicle autonomy and intelligence.  This is not a 
wholly academic question; autonomous aerial vehicles 
are steadily being introduced and finding great utility in 
society.  References 1, 2, and 3, for example, discuss in 
considerable detail some of the societal benefits that 
could be derived from the widespread usage of 
autonomous aerial vehicles, with special emphasis on 
the benefits of autonomous vertical lift and/or rotary-
wing vehicles.  Figure 1 illustrates some of these 
possible mission or functional capabilities.  To a 
considerable degree, though, the rate of UAV 
introduction can be considered contingent upon the 
relative maturity of emerging autonomous system 
technologies.  From an engineering perspective it is 
difficult to develop a technology wherein fundamental 
questions as to its optimum functioning is still 
undecided.  From an operational perspective it is 
difficult to define mission requirements as well as 
acquire and effectively use a new system if key 
performance metrics are only nebulously understood.   

 
Does defining and measuring intelligence for 

embodied (i.e. robotic) intelligent systems, such as 
autonomous aerial vehicles, have special importance, or 
consequence, as compared to other establishing metrics 
for other intelligent systems?   The answer is, of course, 
yes.  For embodied intelligent systems, such as UAVs, 
actions can have dramatic consequences in the real 
world.   UAVs can crash; they can collide in the air or 
on the ground with other vehicles or objects.  They can 
fail to sense, and appropriately deal with, contingencies 
and mission uncertainties that a pilot onboard a manned 
aircraft might otherwise be able to deal with.   
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Fig. 1 – “Unmanned Rotorcraft” and Other 

Autonomous Aerial Vehicle Applications 

 
An example of an unmanned rotorcraft performing a 

rapid deployment of distributed processes, as per Refs. 
3-4, is given in Fig. 2, a forest service “Sentinel” fire 
spotter small autonomous rotary-wing vehicle.  The 
forest fire tracking application has received wide-spread 
attention by the UAV research community, e.g. Refs. 5-
6.   

 

 
Fig. 2 – “Sentinel” fire-spotter 

 
But why worry specifically about defining metrics 

and tests for machine intelligence for unmanned 
rotorcraft?  It is generally recognized that rotorcraft are 
special -- and unique -- vehicles as compared to 
conventional fixed-wing aircraft.  Mastery of rotorcraft 
technologies is demanding, challenging, and inherently 
complex and multidisciplinary; this is especially true for 
unmanned rotorcraft.  One brief example, unmanned 
rotorcraft may not only have to have software capability 
for high levels of mission planning but may also have 
the capacity for controlling high-frequency (n-per-rev) 
on-blade active rotor controls as a function of some 
real-time operating condition(s).  Many other coupled 
aeromechanics and autonomous system technology 
issues may need to be considered in future unmanned 
rotorcraft design.  Control of variable geometry 
configurations for rotorcraft is yet another example.  
The design challenge becomes even more significant 
when a system of systems is being designed.  In this 
case, perhaps, a collective of heterogeneous vehicles 
could be concurrently designed to cooperatively work 
together, or, alternatively, an automated base camp 
might be designed to service and maintain unmanned 
rotorcraft.  A gamut of these and other possibilities, in 
terms of a multiplicity of intelligent systems and 
functions – for future unmanned rotorcraft is shown in 
Fig. 3.     
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• Advanced control strategies for active 
rotor/surface control & variable 
geometry configurations

• Intelligent vehicle health monitoring 
system

• Flight safety and load -limit monitoring 
& control

• Low- to mid-level flight profile/trajectory 
planning

• High-level mission planning and 
decision -making

• Coordination/cooperation with other 
robotic/autonomous assets

• Automated base camps
• Robotic/automated servicing & 

maintenance equipment
• Environmental control under severe 

conditions & remote -site deployment
• Advanced (secured) telecommunication, 

data analysis, & resource allocation 
planning

 
Fig. 3 – Unmanned Rotorcraft and a Potential Multiplicity of Intelligent Systems and Functions 
 

 
As it is essential for successful vehicle development 

and operational usage to define metrics for key aspects 
of autonomous aerial vehicle performance – this, of 
course, includes, in addition to the familiar rotorcraft 
design aeromechanics parameters, new metrics for 
autonomy, intelligence, and others.  If you cannot 
define and measure something, you cannot effectively 
expend effort to physically realize or improve 
something. Given this pressing need, why is it, then, so 
difficult to define and devise metrics for autonomy and 
intelligence?  Two reasons, perhaps.  First of all, it is 
never an easy process to define engineering standards 
for an emerging technology or a competitive research 
field of study.  Second, intelligence continues to be an 
intangible/indefinable, though obviously innate, quality 
to understand in humans let alone defining, devising, 
and measuring it in machines.  Fortunately, human 
beings are quite adept at forging ahead -- despite 
intangible, even metaphysical, concepts and questions -
- pragmatically working around such issues/questions 
as need be.  In this regards, intelligence falls within a 
special class of intangible concepts, or things, that 
could be collectively known as “I know it when I see 
it.”  It is the contention of this paper, that no single 
machine intelligence metric can be fully successful if it 
does not in some manner recognize and draw, in part, 
upon this very human characteristic of the intuitive 
grasp of the intangible.  The trick, of course, is to merge 
qualitative with quantitative attributes, to arrive at 
practical measures that can be used to engineer complex 
systems.  This is where the heritage of handling quality 

requirements comes into the forefront of enabling the 
definition of intelligence metrics for autonomous aerial 
vehicles -- more to follow later.   

 
Prior to proposing specific example of machine 

intelligence metrics, it is crucial to address the question 
as to what are the minimum general attributes of a good 
intelligence metric.   It is proposed that there are four 
essential attributes for good machine intelligence 
metrics: their formulation must be intuitive, their 
estimates must be generalize-able and predictable (from 
test-to-test, mission-to-mission, and operational-
environment-to-operational-environment), they can be 
tailored to specific application domains but must be at 
least broadly applicable within that domain, and they 
must have a graduated (near-continuous and not 
discrete) scale.   Intelligence metrics must be intuitive 
in the context that both the intelligent system 
user/customer and research communities must be able 
to quickly grasp, positively respond to, and concur with 
the key conceptual underpinnings of the intelligence 
metric.   Similarly, a good intelligence metric must be 
both generalize-able and predictable such that a result, 
stemming from a subset of tests or estimates, must be 
consistent when applied to a wider and more diverse set 
of tests, and/or test conditions.  The reliability and 
utility of a metric is greatly diminished if the metric 
results vary wildly from one test, or estimate, to another 
-- i.e. it cannot provide a generalize-able result.  
Further, a metric utility is also diminished if all key 
governing influences/factors cannot be established and 
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accounted for in the test/estimation methodology 
inherent in the metric -- i.e. the metric cannot be 
considered predictable.   

 
The proposed UAV Turing test’s (UTT) greatest 

strength lies in its intuitive formulation.  This is in large 
part because the test draws upon long established, or 
heritage, concepts and practices from the handling 
qualities research community.  The proposed UAV 
Turing test is inherently tailored to the autonomous 
aerial vehicle application domain, but how broadly 
applicable can it be defined such that the same resulting 
metric(s) might be applied to the wide range of aerial 
vehicles that might be considered UAVs?  In other 
words, can these same metrics be applied to a wide 
range of UAVs that includes remotely piloted, tele-
operated, optionally piloted, semi- and fully-
autonomous platforms?  For more discussion, as to 
autonomy versus intelligence for aerial vehicles, see 
Refs. 7-8.  In particular, Ref. 7 presented a level-of-
autonomy scale, 

! 

", that is defined in terms of ground-
station operator workload; refer to Fig. 4.  Other level-
of-autonomy scales have been defined in the literature, 
notably Refs. 9-12.  In particular, a level of autonomy 
scale for spacecraft systems, and planetary aerial 
vehicles in particular, was defined and expanded upon 
in Refs. 8 and 13.  The key difference in the work of 
Refs. 7, 8, 13 -- versus perhaps other work in the 
literature -- is the emphasis on attempting to integrate 
the defined metrics into aircraft and spacecraft 
conceptual design and system analysis processes.   

 
The proposed UAV Turing test has to be carefully 

structured so as to address the question of graduated 
intelligence metric scaling.  The original “imitation 
game” version of the Turing test is a discrete metric.  
(Yes/no, is it a machine or a human being that is being 
interacted with or observed?)  Such a simple yes/no 
discrete metric is inadequate as an intelligence metric 
for UAVs.  This quandary will be discussed further 
later in the paper.    
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Fig. 4 – Levels of Autonomy in Terms of Ground-

Station Operator Workload (from Ref. 7) 

II. The Basic Proposal 
Perhaps what is required is a “Turing Test” for 

UAVs.  This idea was first suggested in Ref. 7.   The 
Turing Test was first described in Ref. 14 – referred 
therein as the “imitation game” (perhaps this was a 
unfortunate label as it seems to compound the 
continuing debate as to whether the Turing test is a 
valid measure by which machine intelligence can be 
judged, e.g., Refs. 15-16).  In short, the Turing test for 
evaluating machine intelligence can be posed as 
follows: during the course of a blind-test general (non-
constrained with respect to subject matter) conversation 
via teletype, could a machine’s response be made to be 
indistinguishable from a person’s?  If so, Turing 
argued, by reason of this inability to distinguish 
between the human and machine, the machine would 
have to be successfully judged as capable of human-like 
“thinking.”  In this regards, a similar kind of question 
can be posed as to UAVs.   In effect, can a UAV, given 
its associated (semi or fully) autonomous systems, be 
made to fly so well, under realistic missions and 
operating conditions, that it appears to be 
(indistinguishable from) flown by a pilot or human 
operator (onboard or remotely piloting the vehicle)?    

 
Compare and contrast this approach to “challenge”-

style evaluations of autonomous systems such as the 
AUVSI (Association for Unmanned Vehicle Systems 
International) annual international aerial robotics 
competitions (Ref. 17) or the DARPA “Grand 
Challenges” (Ref. 18).   The weakness of the challenge 
approach to testing autonomous systems is perhaps the 
results cannot be generalized.  The inherent risk for 
such autonomy challenges is that they may be too 
tailored to specific mission types, and the operational 
environments employed, during the tests.   

 
Finally what is also required to help evaluate UAV 

autonomous system capabilities is essentially a “Turing 
Test” (Ref. 14) for autonomous aerial vehicles.  Such 
testing would have to be conducted by means of 
extensive mission simulations of the vehicle under the 
guidance of its autonomous system software.  Such 
autonomous vehicle mission simulations would also 
have to be benchmarked against missions “flown” with 
pilots/human-operators in the loop.  In turn, scoring 
criteria for such testing could be based upon 1. overall 
mission success metrics and 2. by “handling quality” 
metrics similar to the well-known Cooper-Harper pilot 
ratings, Ref. 19, used for manned aircraft.  Autonomous 
aerial vehicles would be considered to have 
successfully passed this “UAV Turing Test” if the 
aggregate mission success and handling qualities for the 
autonomous aerial vehicle matched or exceeded the 
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equivalent metrics for missions conducted with 
pilots/human-operators in the loop.    

 
 

Table 1.  Sample Notional “UAV Turing Test” 
Checklist 

 
Flight Phases Mission ”X” 

–
Autonomous 

Mission “X” 
– 

 “Piloted” 
   
Take-off (with x% 
probability – 
Gaussian distribution 
– of runway abort) 

  

…   
Navigating and flying 
waypoint-to-waypoint 
trajectories within 
prescribed precision 

  

…   
Landing (with z% 
probability of final 
approach abort) 

  

 
 
Alternatively, a third-party knowledgeable observer 

could provide the “UAV Turing Test” ratings of 
whether a vehicle is autonomous or “piloted” (i.e. 
“check” the boxes in Table 1 for each pertinent mission 
task element).  This observer, or reviewer, would also 
have the additional role of being able to override the 
scripted mission scenario and instigate failure modes 
and change of flight profile/plans.  If the majority of 
tasks are rated as “piloted” by the observer, when in 
reality the vehicle/simulation is fully- or semi- 
autonomously controlled, then the vehicle/simulation 
“passes” the “UAV Turing Test.”  In this regards, this 
UTT approach is more consistent with Turing’s original 
“imitation game” proposal (Ref. 14).   

 
The advantages of the UTT are: its artificial 

intelligence (AI) heritage with respect to the classic 
“imitation game” Turing test; its fundamentally 
intuitive nature; its heritage with respect to the 
aeronautics handling qualities community, as to 
accounting for “pilot rating” of aircraft, aircraft systems 
(both optimal and “degraded”), mission operations, and 
operating environments.   Because of this 
aforementioned heritage with respect to the handling 
qualities community, and by extension the broader 
aviation/user community, the proposed UAV Turing 
test has the greater potential for general adoption by 
that community.   It is essential, though, to define a 
graduate scale for the UTT.  A simple yes/no or 
pass/fail criterion, such as classic Turing test, is 

inadequate for autonomous aerial vehicle applications.  
Addressing how to best implement a gradated-scale -- 
versus a discrete yes/no or pass/fail -- intelligence 
metric is one of the chief objectives of this paper.  It is 
perhaps this lack of a graduated-scale that is one of the 
two key disadvantages of the classic “imitation game” 
Turing test that continues to foster considerable debate 
– and sometimes acrimony – within the artificial 
intelligence research community.  The other key 
disadvantage of the classic Turing test is perhaps in the 
unfortunate choice of the term “imitation game” that 
Turing used to introduce the concept.  The use of the 
term imitation, to many AI researchers, seems to by 
definition imply that the Turing test can never hold any 
validity as a test for machine intelligence.  More 
discussion will follow later in the paper on this debate 
within the AI community. If, as will be suggested, an 
acceptable graduated-scale can be devised for the UTT 
this will no doubt be of considerable enhancement to its 
utility as an intelligence metric.   

 

III. Why Care about this Issue?  The 
Justification for Measuring/Judging 

UAV Intelligence 
What are the key justifications for developing 

robust intelligence metrics for UAV?  Primarily, the 
justification fall in the following categories: 
development, acquisition, and operation.  In all three 
areas technical strides must be made in defining and 
evaluating autonomy and intelligence metrics.    

 
From a development perspective several issues 

stand out as to the imperative for defining robust and 
utilitarian metrics for autonomy and intelligence.     For 
example, autonomy as an emerging design driver -- in 
particular, in the context of a new technical discipline 
yet to be incorporated into aerospace multidisciplinary 
design and optimization and analysis – has been briefly 
discussed in Ref. 20.  Further, the implications of 
autonomy and intelligence metrics on the system 
analysis of aerial vehicle and spacecraft system has 
been discussed in Refs. 2, 7, 11-13; the emphasis of this 
work being primarily on assessing and prioritizing 
autonomous technology portfolios for given domain 
applications.   The technology portfolio tools outlined 
have continued application throughout the development 
cycle of aerospace systems.   Intelligent system metrics 
are discussed in Ref. 1 in the context as being a crucial 
element of defining design functional requirements, 
performing and evaluating conceptual designs, and 
aiding in the overall conceptualization process.    

 
As mission capability becomes more heavily 

influenced by aerial vehicle autonomy and intelligence, 
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then respective user-community acquisition 
departments will require more demanding criteria to 
discriminate between autonomous platforms being 
submitted by offerors.   This is especially true for 
autonomous aerial vehicles.  As the number of 
platforms, vendors, and missions increase, more 
rigorous autonomy and intelligence metrics, and 
associated test and evaluation criteria, will become 
essential.   This, in particular, is an important point: 
autonomy and intelligence metrics have to be testable, 
ideally in a manner consistent with traditional 
aerospace test and evaluation practices.  Additionally, 
the upgrade or modernization programs of early 
generation UAV assets will focus inevitably not only on 
more capable sensor/payload packages but also on the 
caliber of “brains” flying the platforms.    

 
The current primary utility for UAVs is 

surveillance.  From an operations perspective, to enable 
other, more challenging, missions will dictate higher 
levels of autonomy and intelligence.   Further, the user-
community for such platforms will need to be presented 
convincing demonstrations of sustained reliability, 
mission effectiveness, and system “trustworthiness” 
before the widespread acceptance of autonomous aerial 
vehicles for the more challenging missions.      Life 
cycle cost effectiveness for highly autonomous systems 
will be a major concern/issue for not only acquisition 
departments but the ultimate users/operators of such 
systems.  There are three key cost-effectiveness 
assumptions that underlie the current popularity of 
UAVs: first, UAVs can potentially have a lower per 
unit cost than a manned aircraft, second, under special 
circumstances and missions UAVs can be considered 
more expendable than manned aircraft, and, third, use 
of UAVs can significantly reduce operational costs.  As 
autonomous aerial vehicle are fielded these assumptions 
will come under increasing scrutiny as to their validity.   
Therefore, any and all autonomy and intelligence 
metrics will have to be of a general utility so as to be 
ultimately incorporated into life cycle cost estimation 
methodologies.   

 

IV. The UAV Turing Test and Other 
Intelligence Metrics 

There seems to be three general approaches to 
estimating, or rather judging, machine intelligence, 
denoted herein this paper as: mechanistic, emergent, 
and empirical.  The mechanistic approach estimates 
machine intelligence through prescribed functional 
relationships based on innate parametric characteristics 
of the intelligent and/or autonomous systems being 
studied.  Such innate parameters include number of 
sensors or input data provided to the system, number of 

lines of software defining the systems, etc.   Thus the 
mechanistic approach reasoning goes: the more 
complex the machine the more capable and therefore 
the more intelligent (though not necessary 
computationally efficient or, rather, elegant) the 
system.  The mechanistic approach has been examined 
in some depth, e.g. Refs. 7-8,13.  The emergent 
approach seeks to evaluate machine intelligence in 
terms of initiating or observing complex intelligent 
system behavior that is a priori unpredictable and/or 
nondeterministic from the initial set of fundamental 
rules/behaviors instantiated in the system.   In some 
regards this is the “complexity from simplicity” school 
of thought popular in recent artificial intelligence 
research.  An example of this approach can be found in 
Ref. 21.  Finally, the empirical approach seeks to 
validate or quantify autonomous and/or intelligent 
system performance in the context of, ideally physical 
but also simulated, demonstrations and field trials.  It is 
in this later category whereby the concept of robotic or 
autonomous vehicle competitions or challenges comes 
into play.  The UAV Turing test is but one example of 
the empirical approach to defining, or otherwise 
establishing, machine intelligence.    

 
 

V. “Imitation Game” Version of UAV 
Turing-Style Tests 

In order to continue with the discussion regarding 
the UTT, it is necessary to discuss some terminology.  
First, it is necessary to clarify the distinction between 
“piloted” versus “autonomous” (whether semi- or fully-
autonomous) operation of an aerial vehicle.    An aerial 
vehicle can be considered “piloted” in either the case 
where the pilot, or aircraft operator, is physically 
onboard the vehicle or is remotely, but directly 
providing the real-time flight control inputs, operating 
the aircraft.   A couple of examples for clarification are 
provided.  First, an aircraft, with or without passengers, 
with an operator (either onboard or remotely) providing 
only high-level -- neither continuous nor real-time input 
– mission commands and flight guidance should be 
considered as being at least semi-autonomous. Second, 
a manned aircraft, carrying passengers but having no 
operator (onboard or remotely) providing continual 
real-time flight control inputs, should be considered to 
be fully autonomous. Therefore, in this context most 
fielded UAV flying today would be considered to be 
“piloted,” albeit remotely, except for perhaps for a 
subset of mission tasks.  Considerable discussion is 
devoted in Ref. 7 to the topic of defining UAV 
autonomy levels.   
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Aeronautical design standard ADS-33E-PRF, Ref. 
22, defines a fundamental subset of mission task 
elements (MTE) for military rotorcraft.   These mission 
tasks include: hover, landing, slope landing, hovering 
turn, pirouette, vertical maneuver, depart/abort, lateral 
reposition, slalom, vertical re-mask, acceleration and 
deceleration, sidestep, deceleration to dash, transient 
turn, pull-up/pushover, roll reversal, turn to target, high 
yo-yo, and low yo-yo.  Several of these mission tasks 
should ideally performed in both good and degraded 
visual environments, as well as subject to identified 
system/control failures.   Obviously both other and/or 
additional mission tasks can also be considered in 
defining a UTT, depending on the type of vehicle and 
mission being considered.    

 
It is important to rank hierarchically such mission 

tasks into sub-groups of autonomous system 
“complexity.”  This is a refinement of concepts related 
to mission operational and environmental 
characterization as were introduced in Refs. 7-8,13.   To 
some degree, the likes of documents such as the U.S. 
Army’s aeronautical design standard ADS-33E-PRF for 
military rotorcraft handling qualities, Ref. 22, has 
already accomplished this.   

 
It is recommended that following principles be 

considered in attempting to perform the notional UAV 
Turing test: conduct the test to minimize 
observer/reviewer biases; conduct an adequate pre-test 
mission screening process to ensure that extraneous or 
inconsequential mission tasks and operational 
constraints are not introduced during the testing; take 
steps to ensure that a test is conducted such that a 
genuine blind-test is conducted; gather pilot or operator 
post-mission narrative comments; gather, in addition to 
the numerical rating data, observer/reviewer post-UTT 
narrative comments.  Human observers/judges are 
intrinsic to the UTT; psychology and social science 
studies into observer biases and behaviors needs to be 
accounted for, or accommodated, in the UTT 
experiment planning and conduct.  This question of 
observer biases and behaviors is a familiar one in 
sociological and psychological research; e.g. Ref. 23.   
Both the pilot/operator and observer/reviewer narrative 
comments, though not integral to defining UTT-derived 
intelligence metrics as soon will be seen, are 
nonetheless vital in refining and improving subsequent 
UTT exercises.   Such narrative comments, in addition 
to numeric ratings, are very much consistent with the 
practices of the handling qualities community.   

 
Some of the cues that might be used to differentiate 

between whether an aerial vehicle is being operated as a 
“piloted” or “autonomous” vehicle include: slowness of 
mission task execution; unsteadiness of flight 

maneuvers; use of two- versus three-dimensional 
rectilinear versus curvilinear trajectories; discrete or 
step-like, versus continuous and smooth, incremental 
attitude or position changes; (lack of) precision of flight 
maneuvers; severe or abrupt changes in attitude or 
position; failure to complete flight maneuvers or 
mission tasks; (poor) situational awareness of hazards, 
obstacles, and other aircraft flying in close proximity to 
the evaluated aircraft; manifestation of inadequate, or 
inappropriate, flight behaviors in response to (pre-
flight) unplanned/unanticipated changes in the mission 
tasks, or scope, and the operational environment.     

 
Three notional test/assessment protocols are now 

suggested for conducting the UTT.  The protocols are 
listed in an increasing order of complexity/effort.  The 
chief reason for multiple protocols is to attempt to 
decouple or delineate aircraft characteristics from 
autonomous system mission execution and decision-
making performance.    

 
Protocol # 1 “Observational Only” – 
 
This is the closest UTT analog to the classic Turing 
“imitation game.”  A random but comprehensive 
series of mission tasks are “flown,” or rather 
visually presented, to a group of subject matter 
expert reviewers (SME, in the case of autonomous 
aerial vehicles, would be manned-aircraft pilots 
and UAV operators), acting as “ground-observers,” 
via either simulation or flight tests.  An equal 
percentage of the “presented” mission tasks will in 
actuality be executed by pilots (either onboard or 
remotely piloting the aircraft, given the aircraft 
type/nature) or intelligent systems.  Care must be 
taken in the protocols used to sanitize data and 
visual images presented to the reviewers so as to 
not bias the information with non-critical cues.   
The reviewers will would rate each mission task, 

! 

Ti , as being performed, in order of perceived 
“intelligence” guiding the vehicle, as follows: 
(

! 

Ti = 1) by a semi-autonomous system controlling 
the aircraft (whereby some high-level authority or 
decision-making is exerted by human operators); 
(

! 

Ti = 2 ) by a fully-autonomous system (whereby 
not authority or decision-making is exerted by 
human operators during the course of the mission 
or task); (

! 

Ti = 3) by a junior/inexperienced pilot 
(either onboard or remotely piloting the aircraft); 
(

! 

Ti = 4 ) by a senior/experienced pilot (onboard or 
remotely piloting).  This spectrum of reviewer 
responses may seem overly convoluted but, in fact, 
allow the SME reviewers to deal in “shades of 
grey,” rather than absolutes, in their responses.  
(Note, in the above, that it is a (minor) debatable 
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point whether the rating assignments for the semi- 
and fully-autonomous systems should be swapped.)    
 
 
 
Protocol # 2 “Active Participation” – 
 
To partially decouple aerial vehicle handling 
qualities from the autonomy and intelligence 
assessment, this suggested protocol would have 
reviewers (ideally, though not necessarily, the 
same, or all of the, reviewers performing the UTT) 
participate in complementary remotely-piloted 
handling quality simulations/evaluations of the 
subject aircraft prior to performing the above 
described UTT evaluations.  The resulting handling 
quality assessments, i.e. Cooper-Harper ratings, 
would have two functions.  First, it would provide 
the UTT reviewers their own personal qualitative 
benchmarking of the difficulty or ease of flying the 
vehicle.  Second, the Cooper-Harper handling 
quality ratings could be quantitatively incorporated 
in the final derivation of intelligence metrics from 
the UTT evaluations.   
 
Protocol #3 “Benchmarked” – 
 
As an additional step towards attempting to 
decouple the aerial vehicle characteristics from the 
autonomous system technology evaluation, the 
following protocol is suggested.  In addition to 
reviewers evaluating the piloted versus 
autonomous status of a subject aerial vehicle, the 
reviewers would also perform the same 
evaluations, for the same mission tasks, against a 
generic aircraft model maintained as a benchmark 
model for sustained autonomy and intelligence 
evaluations.   

 
Inevitably the proposed UAV Turing test is a 

holistic assessment of the aircraft flight characteristics, 
the sensor or instrumentation implementation, and the 
autonomous systems employed.  This coupling can be 
moderated to some degree by adopting the second or 
third UTT protocols as suggested above.   However, 
this vehicle, sensor, and autonomous-system coupling 
inherent in the UTT assessment is not intrinsically 
undesirable.   For the foreseeable future the trend will 
be to acquire complete or integrated aircraft solutions 
for unmanned rotorcraft and other autonomous aerial 
vehicles.   

 
The results for the above protocol suggestions can 

be rolled up into one notional UTT intelligence metric, 

! 

"#
* , as has been previously suggested.  Alternate 

definitions of metrics, of course, could be proposed 
based on UTT results; however, the following 
expression is a reasonable foundation for future study 
of this issue.   Equation 1 summarizes a definition for 
the proposed metric consistent with the first UTT 
protocol (“Observational Only”) noted in the above.  
The inherent assumption in Eq. 1, and the first UTT 
protocol, is that all tasks are equally weighted with 
respect to difficulty and the need/requirement for 
intelligence guiding the vehicle through an individual 
mission task.  The suggested second and third protocols 
attempt to, among other things, take into account 
differing levels of task difficulty for both for the 
“guiding intelligence” as well as the intrinsic handling 
qualities of the vehicle itself.    

 

! 

"#
*
1+$( ) =

a

4NT

Ti

i=1

NT

%  

 
 (1a) 
And 

 

! 

" =
1

NT

Ti

i=1

NT

#  

 (1b) 
 

Where the ith mission task receives a mean rating (the 
average based on the aggregate of all observers or, 
rather, reviewers) of 

! 

Ti ; 

! 

NT  is the number of mission 
tasks being rated; 

! 

a  is a prescribed constant.   The 
parameter 

! 

" is the stated level of autonomy of the 
subject autonomous aerial vehicle.   It is important to 
note that, though all mission tasks performed as a part 
of the UTT are rated and, further, UTT tasks are 
performed by both pilots, or human operators, and by 
autonomous systems, only the subset of tasks 
performed by the autonomous system (as known only 
by the UTT organizers) are incorporated in the Eq. 1 
and, later, Eq. 2 intelligence metric estimates by means 
of the rating array, 

! 

T .  Finally, note that the mean 
rating, 

! 

" , falls within the range 

! 

0 " # " 4 .    
 
A linear trend is assumed between the mean 

observer/reviewer UTT ratings, 

! 

" , and the UTT 
intelligence metric, 

! 

"#
* .  This linear trend described by 

Eq. 1 can be seen in Fig. 5.   As can be seen in Fig. 5 
and Eq. 1 there is an assumed dependence of aerial 
vehicle intelligence on the same vehicle’s level of 
autonomy.   In other words, the higher the level of 
autonomy, the greater the vehicle intelligence required 
in order to successfully conduct missions.   One 
consequence of Eq. 1 is that one might question why if 
the level of autonomy is zero.  In other words, as the 



 
AHS International 

9 

vehicle is requiring the full attention of a human 
operator to maintain real-time control of the vehicle, 
how can the aerial vehicle be still considered to exhibit 
some small modicum of intelligence?   The answer lies 
in the considering aspects of aerial vehicle control that 
occur outside of operator conscious control or reaction 
times; this would include such things as stability 
augmentation systems and high-frequency active rotor 
or surface controls which arguably provide some 
semblance of intelligence to an aircraft even if the 
vehicle trim state, flight path trajectory, and overall 
mission planning and decision-making are fully under 
the control of a human operator.    
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Fig. 5 – First Protocol Functionality 
 
 
A somewhat more complicated expression, Eq. 2, 

can be defined for 

! 

"#
*  to be consistent with the second 

(“Active Participation”) and third (“Benchmarked”) 
suggested UTT protocols.   

 
 

! 

"#
*
1+$( ) =

a

4NT
g h( )

H iTi
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%  

 
 

! 

g "
1

NT
G j

j=1

NT#  

 
 

! 

h "
1

NT
H j

j=1

NT#  

 (2a-c) 
 
 

Where 

! 

H i  and 

! 

H j  is the Cooper-Harper handling 
quality rating for the ith and jth mission task for the 
subject aircraft respectively.  Further, 

! 

G i  and 

! 

G j  is 

the Cooper-Harper handling quality rating for the ith and 
jth mission task for the generic/benchmark aircraft 
model respectively.   The above weighting, in the form 
of 

! 

G  and 

! 

H  terms, implies that greater weight in the 
intelligence metric assessment is given to tasks that are 
harder to accomplish for a given mission (as 
represented by the set of tasks evaluated in the UTT) 
and a given subject aircraft (versus the generic, or 
benchmark, aircraft model).    

 
Equation 2 is fully consistent with the suggested 

UTT protocol #3.  Equation 2 devolves into a form 
compatible with UTT protocol #2 when the Eq. 3 
constraint is applied.  Finally, Eq. 2 reduces to Eq. 1, 
the protocol #1 form, given both the constraints noted 
in Eqs. 3 and 4.   

 
For protocol #2, then the following holds 
 
 

  

! 

GNT
=GNT "1

=GNT "2
= K =G 2 =G1 = 1 

 
 (3) 
 
For protocol #1, then the following also applies  
 
 

  

! 

HNT
= HNT "1

= HNT "2
= K = H 2 = H1 = 1  

 
 (4) 
 
Finally, given the above, it is assumed that the 

intelligence metric derived from the UTT, 

! 

"#
* , can be 

related to the alternative (mechanistic approach) 
intelligence metric, 

! 

" * (Refs. 7-8,13), by means of Eq. 
5a-b.    

 

! 

"#
*
$" * 

 
Or, to a first order,  
 

! 

"#
*

= b" * 
 (5a-b) 
 
Where 

! 

b is a prescribed constant such that 

! 

0 < b " 1. The ability to straightforwardly map one set 
of metrics against another alternate set of autonomy and 
intelligence scales/metrics is an important attribute.    
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VI. Mission Simulation and UAV Turing 
Tests 

The handling qualities community has long 
recognized the mutual importance, and 
interdependence, of simulation (with varying levels of 
modeling fidelity) and flight testing to arrive at 
satisfactory design solutions for rotorcraft stability and 
control.  Often understated in the design process is the 
utility and overall importance of “mission simulation” 
to defining design functional requirements.  “Mission 
simulation” can be considered necessarily distinct from 
aerial vehicle simulations used to evaluate the detailed 
or final vehicle designs.  Mission simulation can use 
low-fidelity models for the aerial vehicles as long as 
high-fidelity modeling is performed as regards the high-
level mission tasks and operational and environmental 
constraints.   The goal of the mission simulation is to 
evaluate the suitability of identified subject systems in 
expediting, enabling, or improving the performance of 
the mission.   Ultimately the mission simulation is 
performed to evaluate the magnitude and probability of 
mission success.    Mission success has to be defined in 
the context of the particular application or mission that 
is being performed.  References 7 and 8 provided 
several examples of mission success metrics for high 
altitude long endurance UAVs and planetary aerial 
vehicles respectively.   

 
Given the inherent power of mission simulation 

tools, the following 4th protocol () is proposed with 
respect to a UAV Turing test for defining autonomous 
aerial vehicle intelligence metrics.   

 
 
Protocol # 4 (“Fly-Off”) – 
 
Autonomous vehicle mission simulations and flight 
demonstrations would also have to be 
benchmarked against missions “flown” with 
pilots/human-operators in the loop.  In turn, scoring 
criteria for such testing could be based upon both 
quantitative mission success metrics (unique to 
each mission) and by turning to analog “handling 
quality” metrics similar to the well-known Cooper-
Harper pilot ratings used for manned aircraft.  
Autonomous aerial vehicles would be considered 
to have successfully passed this “UAV Turing 
Test” if the aggregate mission success metrics and 
handling qualities for the autonomous aerial 
vehicle matched or exceeded the equivalent metrics 
for missions conducted with pilots/human-
operators in the loop.   

 
A final conjectural expression, Eq. 6a-c, can be 

defined for 

! 

"#
*  to be consistent with this fourth protocol.  

This metric definition embodies the following 
functional assumptions: (1) the intelligence metric can 
be assumed to be directly proportional to both the level 
of autonomy and the relative mission success ratio, i.e. 

! 

"#
*
$% and 

! 

"#
*
$ sA sP , and (2) the intelligence metric 

asymptotically approaches some constant value as 
autonomous system enabled mission success 
approaches some very large (relative) value, i.e. 

! 

"#
*
$ constant  as 

! 

sA sP "# .   Both constraints are 
accounted for in the definition given in Eq. 6a-c.   
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"#
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Where  
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sA "
1
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k=1

NM

#
Autononomous

 

 
 

! 

sP "
1

NM

Sk

k=1

NM

#
Piloted

 

 (6a-c) 
 
 
Note that, in the above, that 

! 

c  and 

! 

d  are prescribed 
constants and 

! 

" is the vehicle’s stated level of 
autonomy.  It should be further noted that adherence, or 
consistency, with the stated level of autonomy should 
be checked/validated during the same set of mission 
simulations that define the mean value of mission 
success, 

! 

sA .  If human operator (hands on) interaction 
with the aerial vehicle is greater than that allowed by 
the stated level of autonomy, 

! 

", (refer, for example, to 
Fig. 4) then either the set of mission simulations would 
be at least partially invalidated or the level of autonomy 
would need to be revised downward.  Figure 6 
illustrates the basic functional properties of Eq. 6a-c.   
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Fig. 6 – Fourth Protocol Functionality 
 
 
The fourth suggested UTT protocol is perhaps the 

best choice, of those presented in this paper, for a 
metric to assess missions, and mission tasks, dominated 
by higher-level mission complexity and required 
decision-making as well substantial operational 
uncertainty.  Use of the relative mission success ratio, 

! 

sA sP , decouples the vehicle aeromechanics 
characteristics from the autonomous system 
characteristics.  Alternatively, measurement of the 
absolute values of 

! 

sA  and 

! 

sP  can give insight into the 
suitability of a subject aircraft – irrespective of the 
intelligent system guiding/operating it – performing a 
given mission; i.e. if 

! 

sA  and 

! 

sP  are both lower than the 
required target values then the aerial platform itself 
might not be suitable for the given mission studied.  In 
this regards, the third and fourth protocols are 
nominally equivalent in the sense that the performance 
– and hence the intelligence assessment – of the aerial 
vehicle’s autonomous systems is being evaluated and 
not other potentially extraneous factors.   The fourth 
protocol can potentially find great utility in the early 
phases of vehicle and autonomous systems 
development.   

 

VII. Potential Objections to Turing-Style 
Tests for Intelligent Systems: Practical 

and Philosophical 
The classic Turing test has come under considerable 

scrutiny in the AI community over the last couple of 
decades.  The strongest objections of “strong” AI (can 
machines, or rather machines, be made to ultimately to 
“think,” particularly using “symbolic” types of 
approaches) and the Turing test, in particular, stems 
from arguments first presented in Ref. 15.  This is 
unfortunate as it potentially reflects a shift from the 

type of empiricism required for the UTT from within 
the AI community.   

 
Those AI researchers who debate the question of 

whether the Turing test truly measures machine 
intelligence (or embodies the key aspects of “thinking” 
machines) are missing the point entirely, or indeed 
whether machines can ultimately be made to think at 
all, e.g. Ref. 15.  As Ref. 16 has pointed out the Turing 
test represents one of many potential empirical criterion 
for studying machine performance, for one or more 
applications, against a (penultimate) benchmark. Some 
researchers, for example Ref. 24, have gone to so as to 
argue that other benchmarks may, at least in the 
interim, be valuable in evaluating the progress of AI 
efforts; such benchmarks being animals and insects.  
For micro aerial vehicles, biomimetic, and/or 
“morphing” aerial vehicles, is it not plausible to, in fact, 
argue that human operators are not the pertinent 
benchmarks for the performance (from a flight control 
perspective) of such vehicles but that benchmark should 
instead be “lower-order” animals?  Be that as it may, 
we are currently discussing autonomous aerial vehicle 
performance versus human operators or pilots, not 
against the flying skills of avian or flying insects.    

 
The above not withstanding, let us stick to the 

empirical and the pragmatic.  Let us leave the (AI) 
philosophy, as it has been said, to the philosophers.  It 
is wholly appropriate to consider the Turing test as a 
conceptual model for defining a series of tailored 
empirical tests and test methodologies, one example 
being the use of independent observers, to judge the 
performance, utility, and overall effectiveness of the 
emerging application domain of autonomous aerial 
vehicles.  Other research considering the feasibility of 
Turing-style tests for UAVs can be found in Refs. 25-
26.   
 

VIII. Additional Considerations 
Will a UAV Turing test truly be able to meet the 

technical and programmatic requirements typical of 
rotorcraft development efforts as to successfully aid in 
the safe, timely, and efficient introduction of 
autonomous aerial vehicles into the national airspace?  
This is, of course, yet to be determined.   In the above 
discussion a number of attributes for a “good” set of 
autonomy and intelligence metrics were discussed.  
Further, any such set of metrics needs to consider not 
only these attributes for good metrics as well as the 
goals and objectives, in terms of vehicle development, 
acquisition, and operations, in employing said metrics.   
Until then considerable discussion and research will 
continue as to defining and using autonomy and 
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intelligence metrics for autonomous aerial vehicles and 
other “intelligent systems” – see for example Refs. 27-
29.   

 
As mission complexity demands greater mission 

planning sophistication, then the UAV Turing test will 
become less of a satisfactory standalone intelligence 
metric.  Additional metrics will likely need to be 
incorporate to assess the satisfactory performance of 
aerial vehicle autonomous systems embodying high 
levels of mission planning.  Such potential metrics 
include the mechanistic autonomy and intelligence 
metrics of Refs. 7-8,13.  Alternatively, though, the set 
of evaluated mission task elements in the UTT can be 
expanded with tasks of increasing complexity and 
sophistication as partial compensation and, therefore, 
extend applicability of the UTT derived metrics.     

 
Though the focus of this paper has been on 

intelligence metrics for UAVs, it should be readily 
apparent that similar Turing-style tests could be devised 
for other intelligent system application domains.  At 
first, envisioning the resulting diverse collection of 
metrics and test methodologies for different domains 
may seem counterproductive.  Ideally, those who might 
argue, it would seem far better that a general unifying 
set of metrics should instead be the goal rather than a 
tailored set of domain-specific metrics.   If indeed such 
a general unifying set of metrics is ultimately devised 
then, probably, it should be adopted.   But, until then, 
taking a pragmatic engineering perspective, there is 
nothing fundamentally wrong with domain-specific 
intelligence metrics – as long as they address the key 
questions regarding aerial vehicle functional 
requirements, as affected by vehicle intelligence, that 
are/will be demanded by developers, users/customers, 
and regulatory bodies.  (Some of these questions having 
been discussed earlier in the paper for autonomous 
aerial vehicles.)   

 

Concluding Remarks 
Likely more than one set of intelligence metrics 

(based perhaps on a combination of mechanistic, 
emergent, or empirical – of which, the UAV Turing test 
is one example – estimation approaches) will be applied 
in assessing the intelligence of autonomous aerial 
vehicles.  This result, a multiplicity of metrics, is not 
necessarily an undesirable outcome.  But, in proposing 
an intelligence metric that has twin parentage from 
classic work from both the aeronautics handling quality 
community, e.g. Cooper-Harper pilot ratings, and the 
AI research community, the classic “imitation game” 
Turing test, it is anticipated that the proposed “UAV 

Turing test” can potentially have broad appeal and 
utility.    

 
In the end, though, it is not solely a question of what 

is the optimum set of autonomy and intelligence metrics 
to apply to unmanned rotorcraft, and autonomous aerial 
vehicles in general, but rather how will such metrics be 
effectively employed to arrive at real engineering 
solutions to development of these aircraft.  Therefore, 
the definition of such metrics must be tailored so as to 
find this utility throughout the complete aircraft 
development cycle – including, perhaps most 
importantly, early incorporation into the system 
analysis and conceptual and preliminary design stages.   
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